Appendix 1. The statistics of raw data for sequencing transcriptome.

Sample	Read length (R1; R2)	Sequencing Reads quantity	Total length of sequencing read (Gb)
HCV	$100 ; 100$	$21,827,299$	4.36
Blank	$100 ; 100$	$42,588,251$	8.50

Appendix 2. Quality of pretreatment transcriptome data.

Sample	Raw data			Valid data			Valid Ratio (Reads)
	Reads	N_base	Length	Reads	N_base	Length	
Blank 1	$42,588,251$	$14,276,600$	101	$26,253,644$	0	$25-101$	61.65%
Blank 2	$42,588,251$	$2,797,900$	101	$24,741,808$	0	$25-101$	58.10%
HCV 1	$21,827,299$	$6,680,000$	101	$17,317,956$	0	$25-101$	79.34%
HCV 2	$21,827,299$	611,300	101	$16,753,438$	0	$25-101$	76.75%

Appendix 3. The Statistics of Gene Mapping for transcriptome data.

Sample	Clean Reads	Gene Mapped Reads	Gene Mapped Ratio	Gene Unique Reads	Gene Unique Ratio
HCV	$34,071,394$	$20,068,969$	58.90%	$10,953,790$	54.58%
Blank	$52,507,288$	$31,012,192$	59.06%	$16,931,528$	54.60%

Appendix 4. The mapped data of transcriptome.

Sample	Mapped Reads	Reads Perfact Match (\%)	Reads 1 Mismatch	Reads 2 Mismatch	Reads Unique Count
HCV	20,068,969	15,075,202 (75.12\%)	$\begin{gathered} 3,200,529 \\ (15.95 \%) \end{gathered}$	1,793,238 (8.94\%)	10,953,790 (54.58\%)
Blank	31,012,192	23,607,123 (76.12\%)	$\begin{aligned} & 4,741,586 \\ & (15.29 \%) \end{aligned}$	2,663,483 (8.59\%)	16,931,528 (54.60\%)

Appendix 5. The data mapped genes of transcriptome.

Sample	Reads Multi Pos	Gene Num	Gene MAX Mapped Reads	Gene Average Mapped Reads
HCV	$9,115,179(45.42 \%)$	29,573	390,597	678
Blank	$14,080,664(45.40 \%)$	29,769	771,586	1,041

Appendix 6. Kolmogorov-Smirnov test for transcriptome data.

Sample	D value	\boldsymbol{P} value
HCV	0.645	0.377
Blank	0.633	0.400

Appemdix 7. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of upregulation metabolic pathways.

A

B

C

D

Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of metabolic pathways was conducted. The upregulation pathways of axon guidance (A), oocyte meiosis (B), regulation of actin cytoskeleton (C), and viral myocarditis (D) were found. Axon guidance pathways could regulate axon guidance, synaptogenesis, progenitor dynamics, and cell migration using a variety of mechanisms. Originally found to control local cytoskeletal rearrangements, axon guidance pathways might also regulate gene expression to control these complex developmental processes. In most mammals, oocytes were arrested at the diplotene stage, also called the Germinal Vesicle (GV) stage of the first meiotic prophase until a surge of gonadotrophin (particularly Luteinizing Hormone (LH)) from the pituitary stimulated the immature oocyte to resume the first meiosis and ovulate. Moreover, the actomyosin cytoskeleton generated force through the association with myosin motors and anchorage at subcellular structures, such as the plasma membrane. Key signaling pathways affected actin filament growth, bundling, branching, crosslinking, and severing. Besides, viral myocarditis was a rare cardiac disease associated with inflammation and injury of the myocardium. The downstream effects were a product of cooperation between viral processes and the innate immune response of host.

Appendix 8. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis of downregulation metabolic

 pathways.A

B

C

D

E

G

H

PROTEOGLYCANS IN CANCER
Hyaluronan (HA)

The downregulations of focal adhesion (A), hepatitis B (B), HTLV-1 infection (C), MAPK signaling pathway (D), osteoclast differentiation (E), p53 signaling pathway (F), pathways in cancer (G), PI3K-Akt signaling (H), proteoglycans in cancer (I), and salmonella infection (J) were obtained. Focal Adhesion Kinase (FAK) was a cytoplasmic tyrosine kinase that played critical roles in integrin-mediated signal transductions and also participated in signaling by other cell surface receptors. Additionally, HBV proteins targeted host proteins,
involved in a variety of functions, thus regulating transcription, cellular signaling cascades, proliferation, differentiation, and apoptosis. HTLV-1-infected cells presenting in breast milk (T cells, macrophages, and/or epithelial cells) could transmit the virus across the oral or gastrointestinal mucosa in several ways. The JNK and p38 MAPK signaling pathways were activated by various types of cellular stress. The JNK pathway consisted of JNK, a MAP2K such as MKK4 (SEK1) or MKK7, and a MAP3K such as ASK1, TAK1, MEKK1, or MLK3. In the p38 pathway, p38 was activated by MKK3 or MKK6, and these MAP2Ks were activated by the same MAP3Ks that function in the JNK pathway. The osteoclasts, multinucleated cells originating from the hematopoietic monocyte-macrophage lineage, were responsible for bone resorption. Osteoclastogenesis was mainly regulated by signaling pathways activated by RANK and immune receptors, whose ligands were expressed on the surface of osteoblasts. Signaling from RANK changed gene expression patterns through transcription factors like NFATc1 and characterized the active osteoclast. The P53-mediated cell signal transduction pathway played an important role in regulating the normal life activities of cells, and it was involved in the regulation of 160 genes. In addition, we knew of many situations where altered signaling pathways produced dramatic changes in cell survival, cell proliferation, morphology, angiogenesis, longevity, or other properties that characterized cancer cells. The PI3K-Akt and Ras-ERK pathways were just examples of oncogenic signaling pathways. Many of the genes commonly mutated in cancer encode the components or targets of PI3K-Akt and Ras-ERK pathways. Many proteoglycans (PGs) in the tumor microenvironment had been shown to be key macromolecules that contributed to the biology of various types of cancer including proliferation, adhesion, angiogenesis, and metastasis, affecting tumor progress. Salmonella infection usually presented as self-limiting gastroenteritis or the more severe typhoid fever and bacteremia. The common disease-causing Salmonella species in humans was a single species, Salmonella enterica, which had numerous serovars.

Appendix 9. Raw sequencing data statistics of microRNAs profiling.

	Blank 1	Blank 2	HCV R1	HCV R2
Total Reads	$42,588,251$	$42,588,251$	$21,827,299$	$21,827,299$
Length of Reads	101	101	101	101
Q20	$42,352,349$	$34,623,530$	21715735	$20,504,479$
Q20\%	99.45%	81.30%	99.49%	93.94%
Q10	$42,588,114$	$42,453,084$	$21,827,230$	$21,798,991$
Q10\%	100.00%	99.68%	100.00%	99.87%

Appendix 10. Quality of pretreatment microRNAs prolifing data.

Sample	Fastq	Clean	Mapp Genome	Mapp sRNA	Know miRNA	Novel miRNA
HCV	$6,823,197$	$4,740,790$	$2,106,026$	384,230	1,294	49,818
Blank	$3,691,871$	$2,660,525$	814,009	75,669	2,702	1,832

Appendix 11. The comparison for statistics results of clean reads of each database (Statics of RNA sequences from the individual libraries).

RNA type	Unique Read				Total Read			
	Blank	\%	HCV	\%	Blank	\%	HCV	\%
Total reads	1,701,271	100.00\%	3,333,102	100.00\%	3,691,871	100.00\%	6,823,197	100.00\%
Clean reads ${ }^{\text {a }}$	247,328	14.54\%	685,639	20.57\%	2,660,525	72.06\%	4,740,790	69.48\%
Matched genome ${ }^{\text {b }}$	126,293	51.06\%	353,743	51.59\%	814,009	30.60\%	2,106,026	44.42\%
bw-HCV ${ }^{\text {b }}$	3	0.00\%	45	0.01\%	5	0.00\%	62	0.00\%
$\text { Know-miRs }{ }^{\text {b }}$	17,001	6.87\%	8,920	1.30\%	109,831	4.13\%	47,345	1.00\%
rRNA ${ }^{\text {b }}$	17,985	7.27\%	83,816	12.22\%	62,669	2.36\%	332,391	7.01\%
tRNA ${ }^{\text {b }}$	1,344	0.54\%	3,095	0.45\%	1,919	0.07\%	8,698	0.18\%
$\text { snRNA }^{\text {b }}$	1,719	0.70\%	3,204	0.47\%	4,882	0.18\%	28,985	0.61\%
$\text { snorna }^{\text {b }}$	186	0.08\%	188	0.03\%	430	0.02\%	470	0.01\%
Rfam_other ${ }^{\text {b }}$	1,757	0.71\%	5,222	0.76\%	2,321	0.09\%	10,358	0.22\%
Repeat ${ }^{b}$	1,579	0.64\%	1,630	0.24\%	3,448	0.13\%	3,328	0.07\%
$\text { exon }^{b}$	12,423	5.02\%	41,197	6.01\%	74,781	2.81\%	128,383	2.71\%
exon_antisense ${ }^{\text {b }}$	1,691	0.68\%	5,327	0.78\%	14,182	0.53\%	35,755	0.75\%
introns ${ }^{\text {b }}$	21,514	8.70\%	53,794	7.85\%	148,608	5.59\%	456,253	9.62\%
introns_antisense ${ }^{\text {b }}$	12,434	5.03\%	35,160	5.13\%	85,528	3.21\%	253,351	5.34\%
intergenic ${ }^{\text {b }}$	36,660	14.82\%	112,190	16.36\%	305,410	11.48\%	800,709	16.89\%
Un-annotated ${ }^{\text {b }}$	121,032	48.94\%	331,851	48.40\%	1,846,511	69.40\%	2,634,702	55.58\%

Note: ${ }^{\text {a }}$, the percentage to the total reads; ${ }^{\text {b }}$, the percentage to clean reads.

